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The bottom boundary layer under a progressive water wave is studied using 
Saffman’s turbulence model. Saffman’s equations are analysed asymptotically for the 
case Re % 1 ,  where Re is a Reynolds number based on a characteristic magnitude of 
the orbital velocity and a characteristic orbital displacement. Approximate solutions 
for the mass-transport velocity a t  the edge of the boundary layer and for the bottom 
stress are obtained, and Taylor’s formula for the rate of energy dissipation is verified. 
The theoretical results are found to agree well with observations for sufficiently large 
Reynolds numbers. 

1. Introduction 

at  the bottom boundary of a fluid of constant mean depth h is given by 
According to Stokes’ theory of progressive water waves, the horizontal velocit,y U 

(1.1) u = V[cos ( k z -  ut) + .(C, + c2 cos 2(kz- at)) + 0(€2)], 
where 

3 

u = (gk tanh kh):, (1.2) 
e=--- Ak 4 Au 

sinh kh’ c2 = ____ sinh kh’ sinh2 kh ’ 
V=.---  

in which A is the wave amplitude and c1 is a dimensionless constant. The force 
generating steady streaming motions arises in the bottom boundary layer rather than 
in the main body of the fluid (Lighthill 1978, pp. 337-351), and therefore the constant 
c1 in (1 .1)  and in the expression 

for the mass-transport velocity a t  the bottom boundary must be calculated by solving 
the equations governing the flow in the boundary layer. 

Theory (Longuet-Higgins 1953) and observations (Russell & Osorio 1958 ; Collins 
1963) indicate that c1 = in the case of laminar flow, and a simple model for the eddy 
viscosity used by Longuet-Higgins in an appendix to the paper by Russell & Osorio 
suggests that  c1 takes the same value if the flow in the boundary layer is turbulent. 
However, the observational papers just cited and subsequent experiments (Rrebner, 
Askew & Law 1966; Bijker, Kalwijk & Pieters 1974) show that the mass-transport 
velocity at the edge of a turbulent boundary layer is smaller than the value calculated 
by Longuet-Higgins by about a factor of two, and that the discrepancy between 
theory and experiment increases with decreasing depth. Furthermore, in some 
experiments negative mass-transport velocities are observed under breaking waves 
and in water of shallow depth. 
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Measurements of the bed shear stress (Riedel, Kamphuis.& Brebner 1972) imply 
lo4, that the flow in the boundary layer is turbulent if the Reynolds number Re 

where Re is given in terms of V ,  o-, and the kinematic viscosity v by 

V2 
Re = -. 

VO- 

The Reynolds number is O( lo5) or larger for wind waves or swell in water of moderate 
or small depth, and the flow in the bottom boundary layer under such waves is almost 
certainly turbulent. Since this flow is not well predicted by Longuet-Higgins’ theory, 
an improved model is needed for application to cases of interest in near-shore 
oceanography and coastal engineering. 

The method used in this paper to calculate the mass transport velocity is based 
on the approximate equation 

in which C is the phase velocity of the waves, 7 is the kinematic bottom stress. and 
the angle brackets denote the average over a wavelength. Equation ( 1  3) is implied 
by Taylor’s (1919) hypothesis that the rate of energy dissipation per unit horizontal 
area is given by ~ ( U T ) ,  where p is the fluid density. Since momentum is lost a t  a 
rate p(7) per unit area and since the ratio of the wave energy to the momentum is 
equal to the phase velocity, the rate of energy dissipation is also given by pC(r). 
Equating the two expressions for the rate of energy dissipation yields (1.5), and an 
equation for c, is obtained by substition from (1 .1) .  

Equation (1.5) can be derived without using Taylor’s hypothesis by showing that 
the Karman integral equation is approximated closely by 

( ( U - c ) r )  = 0, (1.5) 

a a au 
7 = - (US)+- (mY)+ U6-, 

at ax i3X 

where 6 is the displacement thickness, and an explicit form for (1 5)  can be determined 
by deriving an expression for the drag cofficient 

27 
cf = 

In the present study Saffman’s turbulence model (Saffman 1970, 1974; Saffman & 
Wilcox 1974) is used to carry out this calculation and thus to obtain an approximation 
for the mass-transport velocity a t  the edge of the bottom boundary layer. In  addition, 
we will provide a derivation of Taylor’s formula for the rate of energy dissipation 
due to bottom friction. A comparison of calculated and measured mass-transport 
velocities shows a reasonably good degree of agreement between theory and observ- 
ations. The expression obtained here for the drag coeilicient is also compared with 
measurements, and shows a similar degree of agreement. 

2. Formulation 
Let (x, y) denote rectangular coordinates and (u, w) the corresponding Reynolds- 
averaged velocity components, where y = 0 denotes the bottom boundary. In the 
boundary-layer version of Saffman’s model the only significant Reynolds stress is 
given by 

(2.1) 
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where rZy and e denote the kinematic Reynolds stress and turbulent kinetic energy, 
a is a constant, and w is a quantity with the dimensions ofa  frequency which Saffman 
calls the pseudovorticity. Saffman’s equations can be expressed in the form 

where U is given by (1.1) and where 

~a a a 
Dt at ax ay - = -+u-+v--. 

The values of the constants a ,  b, and c are 

a = 0.3, b = 0.15, c = 0.5, 

and the theory predicts a value 

for the Karman constant. The boundary conditions are 

u+U, e + O ,  w - t O  as y-tm, 

( 2 . 7 ~ )  

(2.7 b )  

( 2 . 8 ~ )  

(2.86) u = v = e = O ,  w = a - S  a t  y = O ,  

where X is a function of the roughness length calculated in the paper by Saffman & 
Wilcox, and the kinematic viscous stress a t  the boundary is given by 

au 
lay I 

au 
aY 

T = V -  a t  y = O .  

It is convenient now to introduce the dimensionless variables 

k2ae , w , k27 
w =- r = -  

U 
V ’  ( C T A ) 2 ’  au ’ ( ( T A ) ~  ’ 

u’=- e ’ = -  

and the parameters 

(2.9) 

(2.10) 

(2.11) 

where e is given by (1.2) and where A denotes the dimensionless boundary-layer 
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thickness. This is determined by using the definitions to show that A = &/3 and by 
solving 

K 
(2.12) 

K p=-- 
log R - log (,@Re) 

for p, where Re is defined by (1.4). 
In the remainder of this paper the primes on the dimensionless variables will be 

omitted and dimensional quantities except for the reference and phase velocities V and 
C will be denoted by an asterisk. The dimensionless version of Saffman’s equations 
is then given by 

where 

ax . ay 

and 

These equations and the boundary conditions 

u = cos (x- t )  + EICl + c2 cos 2(x- t)] + O(E2). 

I u+U, e + O ,  w+O as y-too, u = v = e = O  at  y = 0, 

1 au 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

will be treated below for the case R % 1 .  

3. Analysis 
As shown in previous analyses of turbulent boundary-layer flow (e.g. Bush & 

Fendell 1972), the boundary layer consists of two distinct regions, a defect layer in 
which viscous stresses can be neglected, and a wall layer in which the two stresses 
are of the same order of magnitude and in which diffusion of any variable F is large 
compared with dF/dt. When expressed in terms of our notation, the procedure 
suggested by Bush & Fendell consists of expanding the dependent variables in series 
of the form 

(3.1) 

a,(R) 4 a,(R) for m < n, (3.2) 

F = a,(R) F,(x, Y ,  t )  +a,(R) e ( x ,  Y ,  t)  + . . ., 
where the as are gauge functions satisfying 

and where Y = y in the treatment 01 the defect layer and Y = Ry in the treatment 
of the wall layer. The solutions in the defect and wall layers can then be matched by 
using an intermediate variable. The calculation is less straightforward in the present 
study owing to complications connected with bottom roughness, and we prefer 
instead the following informal analysis. 
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To treat the wall layer, we introduce the variables u,, v,, E, Q and 7 through 

307 

U R E = e,  52 = -, w 7 = Ry, 
u w = p ,  v , = p v ,  R (3.3) 

substitute into (2.13)-(2.16), and neglect terms O( 1/PR). The resulting equations are 

(3.4) 

(3.7) 

together with the boundary conditions 

Equations (3.4)-(3.8) are equivalent to a similar set ofequations treated by Saffman 
& Wilcox, and from their analysis it can be inferred that the variables u, v,  e and 
w satisfy 

(3.9a) 

(3.9b) I1 a 
aY 

v+-y-l71:sgn7 , 

(3.9c) 

as 7 + 00, where B is a function of x, t and the roughness length, and where the 
asymptotic form given by (3.9) has been written in termsof the original boundary-layer 
coordinate y. Saffman & Wilcox also provide velocity profiles obtained by numerical 
integration of the wall-layer equations for various roughness lengths, but these are 
not needed in the present calculation. The key point here is that u asymptotes to 
the classical logarithmic law at the outer edge of the wall layer, and that the stress 
is constant through this layer. 

The equations governing the defect layer are derived by noting that the large factor 
1/p multiplying lau/ayl in (2.15) and (2.16) implies that u is independent of y in the 
limit R-t  00. Therefore we introduce the variables ud and vd through 

and obtain the defect-layer equations 

(3.10) 

(3.11) 
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and two more equations obtained by substituting (3.10) into (2.15) and (2.16) and 
by omitting terms O ( l / R ) .  The matching conditions imply that vd+0 and that 
U+pud ,  e and w agree with the expressions (3.9a, c) as y+0. 

The matching condition 
aud 1+sgn7 

aY KY 

at the inner edge of the defect layer implies that  

-+- (3.13) 

(3.14) 

as y+0, where D is independent of y, and matching the resulting asymptotic form for 
u with ( 3 . 9 ~ )  yields the approximation 

(3.15) 

for the bottom stress. Therefore, if we let U* and T* denote the dimensional versions 
of U and 7, T* can be expressed in terms of a drag coefficient cf through 

7* = +Cf I U*l u*, (3.16) 

where 2P2 c -  
- [I +/3(B-D)I2 

(3.17) 

The analysis by Bush & Fendell (1972) suggests solving the defect-layer equations 
by expanding the dependent variables in powers of p, This procedure is correct if the 
bottom is smooth, in which case B is an O(1) constant and (3.12) and (3.17) can be 
approximated by neglecting terms O(p) and O ( p 3 )  respectively. The resulting 
momentum equation is linear in the velocity defect ud, and the drag coefticient is given 

el"' = 2 p .  (3.18) 

A similar set of approximations can be derived for flow over a rough bottom, but 
only if restrictions are placed on the magnitude of the Nikuradse equivalent sand 
roughness k,. 

If terms O ( E / ~ )  are neglected in the defect-layer equations, the approximate forms 
of the derivative of (3.12) with respect to y and of the equations for e and w provide 
a closed set of equations for e ,  w and aud/ay,  with boundary conditions ( 3 . 9 ~ )  and 
(3.13) a t  y = 0. It can be seen by inspection that D and u d  are O(171$), and therefore 
the term PD in the denominator of (3.17) can be neglected if 

by 

(3.19) 

It can also be shown that the neglect of terms nominally O(@) in the defect-layer 
equations is valid if (3.19) is satisfied. 

Observations (Schlichting 1979, p. 620) indicate that, 

X = /3{8.5+-log[E(X-PD)]} 1 
K 

(3.20) 

for completely rough turbulent flow, where X = 1 +pB and where H i s  given in terms 
of Ic,  by 

(3.21) 



Turbulent boundary layer under a progressive water wave 309 

Equation (3.20) can be expressed in the form X = F ( X )  if the term PD is neglected, 
and evaluating the solution of this equation with U set equal to its peak value shows 
that the left-hand side of (3.19) is O(10-l) or smaller for H > 100. For values of lc, 
such that this inequality is satisfied, (3.19) is satisfied with a reasonably good degree 
of accuracy, and the O($) terms in (3.12) and the term PD in (3.15) and (3.17) can 
be neglected. Therefore, if X is now defined as the solution of 

(3.22) 

the drag coefficient for completely rough turbulent flow can be approximated by 

(3.23) 

and (3.12) can be approximated by its linearized form. 
I n  the ensuing analysis i t  will be assumed that the drag coefficient is given by 

cf = C,, where C', denotes (3.18) or (3.23), and that (3.12) can be treated by omitting 
terms O(e/3). The argument given in the last few paragraphs shows that this set of 
approximations is consistent only if the sand roughness is sufficiently small, and 
therefore the results obtained below cannot be applied to the case of flow over 
extremely rough bottoms. 

Assuming now that the bottom is smooth or that  k, is sufficiently small, we can 
determine the constant c,  by integrating the approximated form of (3.12) from 0 to 
00. This yields the linearized Karman integral equation (1.6) in the form 

where 

(3.24) 

(3.25) 

and using the fact that f is a periodic function of 0 = x-t shows that (3.24) is 
equivalent to 

(3.26) 
d 
d0 

p"[(l-€U)2f] = $Cf)UI U ( 1 - e U ) .  

Integrating over a period then yields 

~02'$flUl U(l--EU)d@ = 0,  (3.27) 

which determines the constant el in ( 1 . 1 )  and (1.3). Equation (3.27) is the dimensionless 
form of (1  5) .  

Up to this point no assumptions have been made regarding the magnitude of E ,  

and so (3.27) can be used to calculate the streaming motion associated with a periodic 
progressive wave of arbitrary magnitude. For the purposes of this study i t  suffices 
to restrict our attention to small-amplitude waves by assuming that e 4 1, in which 
case the O(?) term in ( 1 . 1 )  can be neglected and an analytic approximation can be 
derived for c1 if C, is assumed to  be constant. The details of the derivation are 
unimportant, and we quote only the final result : 

c1 = ;(I - c 2 ) + € 2 [ ~ + ~ c z + ~ c ~ + ~ c ~ ~ + o ( € 3 )  (3.28) 

The Stokes expansion is valid provided that ec2 4 1, and for this parameter range 
substitution of (3.28) into (1.3) provides a useful approximation to the mass-transport 
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Wave k (cm-') A (cm) Re x &(theory) &(observed) 

1 0.0418 4.3 0.113 0.648 0.50 
3 0.0231 2.1 0.121 0.536 0.00 
4 0.0231 4.3 0.505 0.538 0.44 
5 0.0231 7.8 1.663 0.541 0.48 
7 0.0160 4.5 1.035 0.350 0.32 

TABLE 1. Theoretical and observed values of & 

Re x cf x lo3 (3.18) e, x lo3 (observed) 

0.5 6.424 4.5 
1 .o 5.564 3.9 
5.0 4.103 3.2 

10.0 3.638 3.0 

TABLE 2. Theoretical and observed values of cf 

velocity a t  the edge of the bottom boundary layer for flow over a smooth bottom. 
Sample calculations made using (3.23) show that (3.28) overestimates the value of 
c1 in the case of flow over a rough bottom by about 20 yo. 

The quantity 

Q = 3 c 1  +9 (3.29) 

is the ratio between the mass-transport velocity a t  the edge of the boundary layer 
predicted by the present theory and that given by Longuet-Higgins (1953). Values 
of Q were measured by Bijker et al. (1974) for waves on sloping bottoms and on the 
flat portion of the bottom in a wave flume. In  the experiments the surface elevation 
was well predicted by Stokes' theory, and reflection from the end of the flume was 
negligible. The comparison shown in table 1 between the present theory and 
measurements is made using the observations by Bijker et al. on a flat part of the 
bottom of depth 45 cm adjacent to a beach with slope 1 : 25, and the theoretical value 
of Q was calculated using (3.28) 

The figures from which the experimental values of Q were taken show a large amount 
of scatter for waves 1 and 3, and the computed values of the Reynolds number R e  
indicate that the flow in the bottom boundary layer for these cases may not have 
been fully turbulent. The closest degree of agreement between the calculated and 
observed values of Q is found for waves 5 and 7 ,  for which the Reynolds number is 
largest and the amount of scatter the smallest. The present theory apparently 
overestimates the value of cl, but the agreement with observations is satisfactory. 

I n  table 2 a comparison is made between the theoretical value (3.18) of the drag 
coefficient and the observations made by Riedel et al. (1972) for turbulent flow over 
a smooth bottom. As anticipated, the discrepancy between theory and observations 
decreases with increasing Reynolds number. 

I n  comparing (3.23) with measurements, it  should be noted that the drag coefficients 
observed by Riedel et al. are expressed in terms of the maximum drag in a cycle, which 
occurs at values of x and t for which U is approximately equal to unity. For a Reynolds 
number Re = los and for roughness lengths such that H 2 300, the drag coefficients 
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obtained by setting U = 1 in (3.22) and (3.23) agree with observations with an error 
of less than 10%. I n  addition, the drag coefficient increases slowly with Re, in 
agreement with observations. The error is larger for smaller values of H ,  and reaches 
23 yo for Re = lo6 and H = 100. This suggests that  the defect-layer equations must 
be solved numerically to calculate an accurate solution for flow over extremely rough 
bottoms. 

In  0 1 we noted that the difference between observed values of Urn and theoretical 
values calculated assuming laminar flow increases with decreasing depth. Sample 
calculations show that this effect is predicted by the model used here and that Urn 
is negative for sufficiently small depth. The experimental finding that negative 
mass-transport velocities are observed under breaking waves cannot be confirmed on 
the basis of the present theory because of our inability to  find a suitable representation 
for the bottom velocity under a breaking wave. 

We conclude by discussing Taylor’s (1919) hypothesis that ‘The rate of dissipation 
of energy by friction is equal to the friction multiplied by the relative velocity of the 
surfaces between which the friction acts.’ As applied to the present problem, Taylor’s 
hypothesis implies that  the rate of energy dissipation per unit horizontal area can 
be calculated by multiplying the bottom stress by the dimensional velocity U* and 
averaging over a wavelength. Assuming that the drag coefficient is constant, and 
working to lowest order in e,  then yields 

C = --cf 2P v, 
3n: 

(3.30) 

where Cis  the rate of energy dissipation per unit area. Despite the apparent weakness 
of Taylor’s reasoning, (3.30) is widely used in coastal engineering. 

Equation (3.30) can be derived by noting that C is the negative of the average over 
a wavelength of the product of the dimensional vertical velocity v* and pressure p* 
evaluated at the edge of the boundary layer (Lamb 1932, pp. 8,9) .  Here v* is the 
flow due to displacement thickness, and is given by 

a 
v* = -(U*S*),  ax* (3.31) 

where S* is the displacement thickness. This equation can be expressed in the form 

pzvz df 
c de’ 

D* = (3.32) 

where G is the phase velocity and f is defined by (3.25). The pressure p* is given by 
irrotational theory in the form 

p*  = Pcu* = pcvcose ,  (3.33) 

with an error O ( B ) ,  and with the same error (3.26) becomes 

df c - = p lcOs el cos e. 
de 2p= 

(3.34) 

Multiplying v* by p* and averaging over a wavelength then yields 

z = -+ vyCf 1 ~ ~ ~ 3 e 1 ) ,  (3.35) 

and assuming that cf is constant verifies Taylor’s formula for the rate of energy 
dissipation. 
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4. Concluding remarks 
As noted earlier, Longuet-Higgins’s ( 1953) theory for the turbulent boundary layer 

under a progressive water wave overestimates the mass transport velocity a t  the edge 
of the layer by about a factor of two. Although his treatment differs considerably 
from ours, his equation relating the shear stress in the boundary layer to the vertical 
and free-stream velocities (Russell & Osorio 1958, p. 192, equation (22)) can be derived 
using our model by omitting terms 0(1/R) in (2.13) and (2.14) and by expanding the 
velocity components in powers of e, At this point in his analysis Longuet-Higgins 
makes the simplifying assumption that the eddy viscosity is constant following a 
particle. This disagrees with Saffman’s model and with other models for treating 
turbulent boundary layers, and can be shown to account for the differences between 
Longuet-Higgins’s theoretical results and observations. 

The results given in the present paper can be obtained by invoking only two 
assumptions, that  the eddy viscosity and tangential velocity obey the classical law 
of the wall a t  the edge of the wall layer and that the tangential velocity in the defect 
layer is equal to the free-stream velocity plus a small perturbation. These features 
of the flow are predicted or assumed in all turbulence models known to the author, 
and therefore the low-order approximations for the mass-transport velocity and the 
drag coefficient obtained above are independent of the model. Higher-order 
approximations for these quantities would depend on the modelling assumptions, and 
might indicate which of the many turbulence models now in use provides the best 
results for oscillatory boundary layers. 

This work was supported by the National Oceanographic and Atmospheric 
Administration under NOAA Grant 04-7-022-44020. 
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